CMS101 ECAL

Seth Cooper

University Of Minnesota

- Electron/photon energy deposition
- The CMS ECAL
- Construction
- Calibration and commissioning
- Physics Goals

Electromagnetic Calorimetry

Bremsstrahlung—(radiation of a photon)

Nucleus

$$\frac{dE}{dx} = -\frac{E}{X_0}$$

$$X_0 = \frac{180A}{Z^2}$$

- > Bremsstrahlung dominates for energies above 20 MeV
- The energy loss is governed by the radiation length X_o

Photon Energy—Calorimetry

Pair Production—e⁺e⁻ production dominates

- > Pair production dominates for energies above 20 MeV
- The energy loss is also governed by the radiation length X_o

The "Electromagnetic Shower"

In general we can say

- □ For each X_o , an electron loses ~63% of its energy to a photon
- For each X_o, a photon splits its energy between an electron and positron
- The depth of max energy deposition scales as the log of the energy:

$$X_{\text{max}} \propto \ln(\frac{E_0}{E_c})$$

The total charged track length scales linearly with the energy:

$$L \propto \frac{E_0}{E_c}$$

Shower Profile

Longtitudal Profile

Lateral Profile

Moliere Radius: $R_m \approx X_0$ (from multiple scattering)

To contain >99% shower need depth of material ~ 25 X₀

To measure lateral position accurately need segmentation ~ X₀

The CMS ECAL

Higgs Decay Goal

- Low mass Higgs has the smallest width
 - Natural location to focus on

University of Minnesota

ECAL: Higgs → γγ Design Goal

- The reconstructed mass of the Higgs depends on the energy of both photons as well as the angle between the two
- The error of the photon energy is very important

$$m_{\gamma\gamma}^2 = 2E_{\gamma 1}E_{\gamma 2}(1-\cos\theta_{\gamma 1,\gamma 2})$$

$$\frac{\sigma_{m_{\gamma\gamma}}}{m_{\gamma\gamma}} = \frac{1}{2} \left[\frac{\sigma_{E_{\gamma 1}}}{E_{\gamma 1}} \oplus \frac{\sigma_{E_{\gamma 2}}}{E_{\gamma 2}} \oplus \frac{\sigma_{\theta_{\gamma\gamma}}}{\tan(\theta_{\gamma\gamma}/2)} \right]$$

This significance is maximized by the energy resolution of the Ecal

Must choose solid object

Sampling Calorimeter

Total absorption calorimeter

Active Detector (ionization chamber or scintillator) to measure total track length L

Cheap with poor resolution ~2.5% for 100 GeV Photon

Scintillator both causes shower and is active detector

Expensive with good Resolution ~0.5% at 100 GeV

PbWO₄ Crystals

- Lead Tungstate Crystals
 - Moliére radius: 2.2cm
 - Radiation Length: 0.89cm
 - Scintillation decay time: 80% at 35ns
 - Shown to be radiation resistant
 - □ -1.9%/°C temp dependence
- Lead Tungstate Crystals in CMS (Barrel)
 - □ "Average size", 2.4x2.4cm² and 23cm in length
 - 34 Different crystal shapes
 - □ 25.8 X_o

University of Minnesota

PbWO₄ Crystals

Experiment	C. Ball	L3	CLEO II	C. Barrel	KTeV	BaBar	BELLE	CMS
Accelerator	SPEAR	LEP	CESR	LEAR	FNAL	SLAC	KEK	CERN
Crystal Type	NaI(TI)	BGO	CsI(TI)	CsI(TI)	CsI	CsI(TI)	CsI(TI)	PbWO ₄
B-Field (T)	-	0.5	1.5	1.5	-	1.5	1.0	4.0
r _{inner} (m)	0.254	0.55	1.0	0.27	-	1.0	1.25	1.29
Number of Crystals	672	11,400	7,800	1,400	3,300	6,580	8,800	76,000
Crystal Depth (X ₀)	16	22	16	16	27	16 to 17.5	16.2	25
Crystal Volume (m ³)	1	1.5	7	1	2	5.9	9.5	11
Light Output (p.e./MeV)	350	1,400	5,000	2,000	40	5,000	5,000	2
Photosensor	PMT	Si PD	Si PD	WSa+Si PD	PMT	Si PD	Si PD	APD ^a
Gain of Photosensor	Large	1	1	1	4,000	1	1	50
σ_N /Channel (MeV)	0.05	8.0	0.5	0.2	small	0.15	0.2	40
Dynamic Range	10 ⁴	10^{5}	10 ⁴	10 ⁴	10 ⁴	104	10 ⁴	10 ⁵

To comply with LHC and CMS conditions ECAL must be:

- fast
- compact
- highly segmented
- radiation resistant

Compact Muon Solenoid (CMS)

Scintillating

PbWO₄ Crystals

University of Minnesota

ECAL e γ CALORIMETERS

HCAL

Plastic scintillator/ brass sampling

SUPERCONDUCTING COIL

TRACKER > Silicon Micro Strips Pixels

4 T magnetic Field Total Weight 12,500 t Overall Diameter 15m Overall Length 21.6m

MUON BARREL

Drift Tube Resistive Plate Chambers (ΔT) Chambers (RPC)

ECAL layout

Barrel: |η| < 1.48 36 Super Modules 61200 crystals (2x2x23cm³)

EndCaps: 1.48 < |η| < 3.0 4 Dees 14648 crystals (3x3x22cm³)

ECAL Barrel Optical Readout

≈ 4.5 photo-electrons/MeV

122400 Total APD's

Very linear devices

- □Two 5x5 mm² APD's/crystal
- □ Gain 50
- □QE 75% @ 420 nm
- □ Temp sensitivity -2.4%/°C

ECAL Endcap Photodetectors University OF MINNESOTA

Endcaps: - Vacuum phototriodes (VPT)

More radiation resistant than Si diodes (with UV glass window)

- Active area ~ 280 mm²/crystal
- Gain 8 -10 (B=4T) Q.E.~20% at 420 nm

PbWO₄ Crystals for ECAL

On detector electronics

University of Minnesota

Assembly of ECAL

Total 36 Supermodules

EB Factory

First SM in HCAL

University of Minnesota

EB complete

(CMS101 ECAL)

Two-layer silicon preshower detector placed in front of the endcap calorimeters

2mm silicon strips to separate γ 's from π 0's and for vertex identification.

Preshower mechanics

(CMS101 ECAL)

University of Minnesota

Cabling on Dee1

Performance

Performance Checks

- Cross Checks
 - Test Pulse (after APD)
 - Compared to previous test pulses
 - Laser allows for self referencing
 - Compare one laser run to another

University of Minnesota

ECAL monitoring system

Expected γ dose-rate on crystals at LHC high luminosity:

 $0.2-0.3 \text{ Gy/h (EB)} \rightarrow 15 \text{ Gy/h (EE)}$

During LHC cycles, a continuous variation of signal is expected

To follow and correct, a fiber-distributed Laser system monitors the light response of each crystal

Laser fluctuations measured by PN diodes. Stability 0.1%.

Calibration

Energy resolution

$\frac{\sigma(E)}{E} = \frac{a}{\sqrt{E}} \oplus \frac{b}{E} \oplus c$

ECAL TDR 1997

Stochastic Term

- Lateral Containment 5x5 (1.5 %)
- Photo-statistics (2.3%)
- Preshower (5%)
- Total Barrel 2.7%
- Total Endcap 5.7%

Noise Term

- •Barrel 155 MeV (210 HL)
- •Endcap 770 MeV (915 HL)

Constant Term

- Leakage: front, rear, dead material<0.2 %
 CMS full shower simulation
- LY Uniformity effect < 0.3%
- Temperature stabilization < 0.2%
 ΔT<0.05°C; @ 18 °C over a time interval t~t_{calibration}
 (dLY/dT = -2.0%/°C @ 18°C;
 dGain_{APD}/dT ~ -2.4 %/°C)
- APD bias stabilization < 0.2% Δ V<66 mV @ 380 V; over a time interval t~t_{calibration} (dGain/dV = 3.1%/V)
- Intercalibration by light injection monitor and physics signals (most of the energy in a single crystal goal < 0.5%)

University of Minnesota

ECAL Inter-calibration Goals

- Energy Resolution $(\sigma_E/E)^2 = (a/\sqrt{E})^2 + (b/E)^2 + c^2$
- Goal : constant term "c" $< 0.5\% \rightarrow \sigma/E < 0.5\%$ (For High Energies)
- Raw crystals 15% spread.
- In-situ Calibrations
 - □ $Z \rightarrow e^+e^-$ ~few days 1% (with ϕ ring inter-calibration)
 - □ $W^{\pm} \rightarrow e^{\pm}v \sim 2$ months E/p from Tracker
 - $\pi^0 \rightarrow \gamma \gamma, \, \eta^0 \rightarrow \gamma \gamma, \, \text{etc.}$
- Initial inter-calibrations
 - □ LY ~4%
 - □ Cosmics ~1.5%
 - Test Beam ~0.3% (Only available for 10 SM's)
- Reason for pre-calibration
 - Uniform detector response at startup

Laboratory Inter-Calibration

- Two current methods to LY measurements (Basically Quality Checks) automated
 - □ 1. Direct LY along crystal ⁶⁰Co
 - ~1.2 MeV source
 - 2. Transmission through crystals longitudinally at 360nm
- Combined Laboratory constants
 - Laboratory measurements are combined; LY, APD gain, the preamp.
 - Result of a ~4.0% agreement compared to testbeam calibration constants
 - Comparing ~1 MeV Source to 120 GeV testbeam!

Cosmic

- 4-7 Million Triggers
- All 36 SMs have been inter-calibrated
- 1.5% overall precision

(CMS101 ECAL)

Test beam

Pre-calibration with Cern-SPS high energy electron beams (from 15 GeV to 250 GeV) mandatory to understand the system

- 2004 Test-beam with 1 Super Module
 (45 days of data taking; detailed system test)
- 2006 Test-beam(s)
 - > 10 SM calibrated (1 twice, 13600 xl)
 - Detailed studies E, η behaviour
 - Combined test with HCAL (1SM)

Seth Cooper University of Minnesota (CMS101 ECAL)

University of Minnesota

Test Beam

Reconstruction

Electrons/Photons

Cluster Reconstruction:

- find bumps in calorimeter
- cluster the bumps
- approximate window size $\Delta \phi \times \Delta \eta \sim 0.8 \times 0.06$

Corrections:

 containment, cracks, energy loss in the tracker material

Hybrid Algorithm – default in EB

Island Algorithm – default in EE

ECAL:

- Project Manager: Phillippe Bloch (CERN)
- US PI's have membership of ECAL institutional board
- Roger Rusack (Minnesota) is US ECAL manager

Physics

- Detector Performance Group (DPG)—calibration and commissioning: Paolo Meridiani and Giovanni Franzoni
- Physics Object Group (POG): Chris Seez and Pascal Vanlaer

 U.S. institutions involved in ECAL include:
 Caltech, Cornell, KSU, FSU, Minnesota, Notre Dame, Virginia

CRUZET runs

CRUZET overview

- Ecal has successfully participated in the GRUMM and CRUZET 1/2 runs (also previous global runs)
- Millions of events logged!
- As much of the detector as possible running simultaneously
- In CRUZET, all of EB read out most of the time
- Using triggers from muon system, sometimes calorimeter triggers in addition
- Also looking at calibration using dE/dx

OF MINNESOTA

CRUZET1 energies

- Energy > 10GeV
 - ~5k clusters (2.5e-4)
- Energy > 200GeV
 - ~100 clusters (4e-6)

Created "high energy" skim: events at least 1 cluster with E>10 GeV

CRUZET1 track association

Single Event Run 43566, Event 37324
Triggered by DT: Clear association w/ DT
High Energy Event: 288 GeV, 25 crystals

Untitled Document Data (3D Window #1)

Occupancy of SC seed xtals which match to a bottom track

- The ECAL has performed well in tests and is calibrated
- Barrel is installed and participating in global runs (CRUZET)
 - Soon the endcaps will be ready one-by-one for installation
- Now ready to focus on the physics
 - e/gamma

Extras

University of Minnesota

Off Detector electronics

• Barrel VME modules production completed:

DCC (data)

CCS (control)

TCC-68 (trigger)

• Endcap DCC and CCS available.

TCC-48 in prototyping phase.

Seth Cooper University of Minnesota (CMS101 ECAL)

Calibration Chain

- Crystal Energy → ADC count
 - Crystal optical response
 - APD Gain
 - Amplifier Gain
 - ADC 12bit Out

